Mechanical Charactristics of Metallic Hollow Sphere Structure
نویسندگان
چکیده
منابع مشابه
Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere
In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potenti...
متن کاملA hollow sphere secondary structure of LiFePO4 nanoparticles.
We report on the evolution of a hollow sphere secondary structure of spherical nanoparticles by a solubilization-reprecipitation mechanism based on the difference of solubility products (K(sp)) of two different precipitates. Carbon-coated nanoparticles of olivine structure LiFePO(4) served as the primary nano-blocks to build the secondary nano-architecture.
متن کاملMechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects
Ordered cellular solids have higher compressive yield strength and stiffness compared to stochastic foams. The mechanical properties of cellular solids depend on their relative density and follow structural scaling laws. These scaling laws assume the mechanical properties of the constituent materials, like modulus and yield strength, to be constant and dictate that equivalent-density cellular s...
متن کاملEnergy dissipation mechanisms in hollow metallic microlattices
When properly designed at ultra-low density, hollow metallic microlattices can fully recover from compressive strains in excess of 50%, while dissipating a considerable portion of the elastic strain energy. This article investigates the physical mechanisms responsible for energy loss upon compressive cycling, and attributes the most significant contribution to a unique form of structural dampin...
متن کاملMechanical Properties of Metallic Glasses
Metallic glasses are known for their outstanding mechanical strength. However, the microscopic mechanism of failure in metallic glasses is not well-understood. In this article we discuss elastic, anelastic and plastic behaviors of metallic glasses from the atomistic point of view, based upon recent results by simulations and experiments. Strong structural disorder affects all properties of meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
سال: 2005
ISSN: 0387-5008,1884-8338
DOI: 10.1299/kikaia.71.796